Roblox-File-Format/BinaryFormat/Chunks/PROP.cs
2019-05-18 23:44:51 -05:00

452 lines
16 KiB
C#

using System;
using System.IO;
using System.Linq;
using RobloxFiles.Enums;
using RobloxFiles.DataTypes;
using RobloxFiles.Utility;
namespace RobloxFiles.BinaryFormat.Chunks
{
public class PROP
{
public readonly string Name;
public readonly int TypeIndex;
public readonly PropertyType Type;
private BinaryRobloxFileReader Reader;
public PROP(BinaryRobloxFileChunk chunk)
{
Reader = chunk.GetDataReader();
TypeIndex = Reader.ReadInt32();
Name = Reader.ReadString();
try
{
byte propType = Reader.ReadByte();
Type = (PropertyType)propType;
}
catch
{
Type = PropertyType.Unknown;
}
}
public void ReadProperties(BinaryRobloxFile file)
{
INST type = file.Types[TypeIndex];
Property[] props = new Property[type.NumInstances];
int[] ids = type.InstanceIds;
int instCount = type.NumInstances;
for (int i = 0; i < instCount; i++)
{
int id = ids[i];
Instance inst = file.Instances[id];
Property prop = new Property(inst, this);
props[i] = prop;
inst.AddProperty(ref prop);
}
// Setup some short-hand functions for actions used during the read procedure.
var readInts = new Func<int[]>(() => Reader.ReadInts(instCount));
var readFloats = new Func<float[]>(() => Reader.ReadFloats(instCount));
var loadProperties = new Action<Func<int, object>>(read =>
{
for (int i = 0; i < instCount; i++)
{
object result = read(i);
props[i].Value = result;
}
});
// Read the property data based on the property type.
switch (Type)
{
case PropertyType.String:
loadProperties(i =>
{
string result = Reader.ReadString();
// Leave an access point for the original byte sequence, in case this is a BinaryString.
// This will allow the developer to read the sequence without any mangling from C# strings.
byte[] buffer = Reader.GetLastStringBuffer();
props[i].RawBuffer = buffer;
return result;
});
break;
case PropertyType.Bool:
loadProperties(i => Reader.ReadBoolean());
break;
case PropertyType.Int:
int[] ints = readInts();
loadProperties(i => ints[i]);
break;
case PropertyType.Float:
float[] floats = readFloats();
loadProperties(i => floats[i]);
break;
case PropertyType.Double:
loadProperties(i => Reader.ReadDouble());
break;
case PropertyType.UDim:
float[] UDim_Scales = readFloats();
int[] UDim_Offsets = readInts();
loadProperties(i =>
{
float scale = UDim_Scales[i];
int offset = UDim_Offsets[i];
return new UDim(scale, offset);
});
break;
case PropertyType.UDim2:
float[] UDim2_Scales_X = readFloats(),
UDim2_Scales_Y = readFloats();
int[] UDim2_Offsets_X = readInts(),
UDim2_Offsets_Y = readInts();
loadProperties(i =>
{
float scaleX = UDim2_Scales_X[i],
scaleY = UDim2_Scales_Y[i];
int offsetX = UDim2_Offsets_X[i],
offsetY = UDim2_Offsets_Y[i];
return new UDim2(scaleX, offsetX, scaleY, offsetY);
});
break;
case PropertyType.Ray:
loadProperties(i =>
{
float[] rawOrigin = Reader.ReadFloats(3);
Vector3 origin = new Vector3(rawOrigin);
float[] rawDirection = Reader.ReadFloats(3);
Vector3 direction = new Vector3(rawDirection);
return new Ray(origin, direction);
});
break;
case PropertyType.Faces:
loadProperties(i =>
{
byte faces = Reader.ReadByte();
return (Faces)faces;
});
break;
case PropertyType.Axes:
loadProperties(i =>
{
byte axes = Reader.ReadByte();
return (Axes)axes;
});
break;
case PropertyType.BrickColor:
int[] BrickColorIds = readInts();
loadProperties(i =>
{
int number = BrickColorIds[i];
return BrickColor.FromNumber(number);
});
break;
case PropertyType.Color3:
float[] Color3_R = readFloats(),
Color3_G = readFloats(),
Color3_B = readFloats();
loadProperties(i =>
{
float r = Color3_R[i],
g = Color3_G[i],
b = Color3_B[i];
return new Color3(r, g, b);
});
break;
case PropertyType.Vector2:
float[] Vector2_X = readFloats(),
Vector2_Y = readFloats();
loadProperties(i =>
{
float x = Vector2_X[i],
y = Vector2_Y[i];
return new Vector2(x, y);
});
break;
case PropertyType.Vector3:
float[] Vector3_X = readFloats(),
Vector3_Y = readFloats(),
Vector3_Z = readFloats();
loadProperties(i =>
{
float x = Vector3_X[i],
y = Vector3_Y[i],
z = Vector3_Z[i];
return new Vector3(x, y, z);
});
break;
case PropertyType.CFrame:
case PropertyType.Quaternion:
// Temporarily load the rotation matrices into their properties.
// We'll update them to CFrames once we iterate over the position data.
loadProperties(i =>
{
int normXY = Reader.ReadByte();
if (normXY > 0)
{
// Make sure this value is in a safe range.
normXY = (normXY - 1) % 36;
NormalId normX = (NormalId)(normXY / 6);
Vector3 R0 = Vector3.FromNormalId(normX);
NormalId normY = (NormalId)(normXY % 6);
Vector3 R1 = Vector3.FromNormalId(normY);
// Compute R2 using the cross product of R0 and R1.
Vector3 R2 = R0.Cross(R1);
// Generate the rotation matrix and return it.
return new float[9]
{
R0.X, R0.Y, R0.Z,
R1.X, R1.Y, R1.Z,
R2.X, R2.Y, R2.Z,
};
}
else if (Type == PropertyType.Quaternion)
{
float qx = Reader.ReadFloat(), qy = Reader.ReadFloat(),
qz = Reader.ReadFloat(), qw = Reader.ReadFloat();
Quaternion quaternion = new Quaternion(qx, qy, qz, qw);
var rotation = quaternion.ToCFrame();
return rotation.GetComponents();
}
else
{
float[] matrix = new float[9];
for (int m = 0; m < 9; m++)
{
float value = Reader.ReadFloat();
matrix[m] = value;
}
return matrix;
}
});
float[] CFrame_X = readFloats(),
CFrame_Y = readFloats(),
CFrame_Z = readFloats();
loadProperties(i =>
{
float[] matrix = props[i].Value as float[];
float x = CFrame_X[i],
y = CFrame_Y[i],
z = CFrame_Z[i];
float[] position = new float[3] { x, y, z };
float[] components = position.Concat(matrix).ToArray();
return new CFrame(components);
});
break;
case PropertyType.Enum:
// TODO: I want to map these values to actual Roblox enums, but I'll have to add an
// interpreter for the JSON API Dump to do it properly.
uint[] enums = Reader.ReadUInts(instCount);
loadProperties(i => enums[i]);
break;
case PropertyType.Ref:
int[] instIds = Reader.ReadInstanceIds(instCount);
loadProperties(i =>
{
int instId = instIds[i];
return instId >= 0 ? file.Instances[instId] : null;
});
break;
case PropertyType.Vector3int16:
loadProperties(i =>
{
short x = Reader.ReadInt16(),
y = Reader.ReadInt16(),
z = Reader.ReadInt16();
return new Vector3int16(x, y, z);
});
break;
case PropertyType.NumberSequence:
loadProperties(i =>
{
int numKeys = Reader.ReadInt32();
var keypoints = new NumberSequenceKeypoint[numKeys];
for (int key = 0; key < numKeys; key++)
{
float Time = Reader.ReadFloat(),
Value = Reader.ReadFloat(),
Envelope = Reader.ReadFloat();
keypoints[key] = new NumberSequenceKeypoint(Time, Value, Envelope);
}
return new NumberSequence(keypoints);
});
break;
case PropertyType.ColorSequence:
loadProperties(i =>
{
int numKeys = Reader.ReadInt32();
var keypoints = new ColorSequenceKeypoint[numKeys];
for (int key = 0; key < numKeys; key++)
{
float Time = Reader.ReadFloat(),
R = Reader.ReadFloat(),
G = Reader.ReadFloat(),
B = Reader.ReadFloat();
Color3 Value = new Color3(R, G, B);
byte[] Reserved = Reader.ReadBytes(4);
keypoints[key] = new ColorSequenceKeypoint(Time, Value, Reserved);
}
return new ColorSequence(keypoints);
});
break;
case PropertyType.NumberRange:
loadProperties(i =>
{
float min = Reader.ReadFloat();
float max = Reader.ReadFloat();
return new NumberRange(min, max);
});
break;
case PropertyType.Rect:
float[] Rect_X0 = readFloats(), Rect_Y0 = readFloats(),
Rect_X1 = readFloats(), Rect_Y1 = readFloats();
loadProperties(i =>
{
float x0 = Rect_X0[i], y0 = Rect_Y0[i],
x1 = Rect_X1[i], y1 = Rect_Y1[i];
return new Rect(x0, y0, x1, y1);
});
break;
case PropertyType.PhysicalProperties:
loadProperties(i =>
{
bool custom = Reader.ReadBoolean();
if (custom)
{
float Density = Reader.ReadFloat(),
Friction = Reader.ReadFloat(),
Elasticity = Reader.ReadFloat(),
FrictionWeight = Reader.ReadFloat(),
ElasticityWeight = Reader.ReadFloat();
return new PhysicalProperties
(
Density,
Friction,
Elasticity,
FrictionWeight,
ElasticityWeight
);
}
return null;
});
break;
case PropertyType.Color3uint8:
byte[] Color3uint8_R = Reader.ReadBytes(instCount),
Color3uint8_G = Reader.ReadBytes(instCount),
Color3uint8_B = Reader.ReadBytes(instCount);
loadProperties(i =>
{
byte r = Color3uint8_R[i],
g = Color3uint8_G[i],
b = Color3uint8_B[i];
return Color3.FromRGB(r, g, b);
});
break;
case PropertyType.Int64:
long[] int64s = Reader.ReadInterleaved(instCount, (buffer, start) =>
{
long result = BitConverter.ToInt64(buffer, start);
return (long)((ulong)result >> 1) ^ (-(result & 1));
});
loadProperties(i => int64s[i]);
break;
case PropertyType.SharedString:
uint[] sharedKeys = Reader.ReadUInts(instCount);
loadProperties(i =>
{
uint key = sharedKeys[i];
return file.SharedStrings[key];
});
break;
default:
Console.WriteLine("Unhandled property type: {0}!", Type);
break;
}
Reader.Dispose();
}
}
}